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Improving the false nearest neighbors method with graphical analysis
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We introduce a graphical presentation for the false nearest neighbors~FNN! method. In the original method
only the percentage of false neighbors is computed without regard to the distribution of neighboring points in
the time-delay coordinates. With this presentation it is much easier to distinguish deterministic chaos from
noise. The graphical approach also serves as a tool to determine better conditions for detecting low-
dimensional chaos, and to get a better understanding on the applicability of the FNN method.
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I. INTRODUCTION

One of the main tasks of time series analysis is to de
mine from a given time series the basic properties of
underlying process, such as nonlinearity, complexity, cha
etc. Among the most widely used approaches is state s
reconstruction by time delay embedding@1#. After this step
has been taken one can calculate correlation dimensi
various entropy quantities and estimates for Lyapunov ex
nents. The crucial problem is how to select a minimal e
bedding dimension for the pseudo-phase-space. If the
bedding dimension is too small, one cannot unfold
geometry of the~possible strange! attractor, and if one uses
too high embedding dimension, most numerical meth
characterizing the basic dynamical properties can prod
unreliable or spurious results.

The false-nearest-neighbors~FNN! algorithm@2–4# is one
of the tools that can be used to determine the numbe
time-delay coordinates needed to reconstruct the dynam
In this method one forms a collection

y~k!5@x~k!,x~k11!, . . . ,x~k1d21!# ~1.1!

of d-dimensional vectors for a given time delay~here nor-
malized to 1!, x(1),x(2), . . . ,x(N) is a scalar time series. I
the numberd of time-delay coordinates in Eq.~1.1! is too
small, then two time-delay vectorsy(k) and y( l ) may be
close to each other due to the projection rather than to
inherent dynamics of the system. When this is the ca
points close to each other may have very different time e
lution, and actually belong to different parts of the under
ing attractor.

In order to determine the sufficient numberd of time-
delay coordinates one next looks at the nearest neighbo
each vector~1.1! with respect to the Euclidean metric. W
denote the nearest neighbor ofy(k) by y„n(k)…. We then
compare the ‘‘(d11)’’st coordinates ofy(k) and y„n(k)…,
e.g., x(k1d) and x„n(k)1d…. If the distance ux(k1d)
2x„n(k)1d…u is large the pointsy(k) andy„n(k)… are close
just by projection. They are false nearest neighbors and
will be pulled apart by increasing the dimensiond. If the
distancesux(k1d)2x„n(k)1d…u are predominantly small
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then only a small portion of the neighbors are false andd can
be considered a sufficient embedding dimension.

In the FNN algorithm@2–4# the neighbor is declared fals
if

ux~k1d!2x„n~k!1d…u
iy~k!2y„n~k!…i

.Rtol , ~1.2!

or if

iy~k!2y~n~k!!i21$x~k1d!2x„n~k!1d…%2

RA
2

.Atol
2 ,

~1.3!

where

RA
25

1

N (
k51

N

@x~k!2 x̄#2, ~1.4!

andx̄ is the mean of all points. The parameterRtol in the first
threshold test~1.1! is fixed beforehand, and in most studies
has been set to 10220. The second criterion~1.3! was pro-
posed in order to provide correct diagnostics for noise a
usually one takesAtol'2. If this test fails, then even the
(d11-dimensional! nearest neighbors themselves are
apart in the extendedd11 dimensional space and should b
considered false neighbors.

Using tests ~1.2! and ~1.3! one can check all
d-dimensional vectors in the data set, and compute the
centage of false nearest neighbors. By increasing the dim
siond this percentage should drop to zero or to some acc
able small number. In that case the embedding dimensio
large enough to represent the dynamics.

This method works quite well with noise-free data, a
the percentage of false neighbors does not depend on
number of data points if it is sufficient. However, if data
corrupted with noise, the percentage of false nearest ne
bors for a given embedding dimension increases as
amount of data is increased, and therefore a longer time
416 ©1999 The American Physical Society
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FIG. 1. In each subfigure we have plotted the target distanceRD ~vertical axis, range 0 to 0.072! as a function of the nearest neighb

distanceR̃d ~horizontal axis, range 0 to 0.072! for the Henon system~the dimension of the attractor is 1.26). In each subfigure we have
given two distributions in the form of histograms:Rd distribution on the bottom part of the graph, and the radial distribution on the qu
arc. The total number of data points is 1000. The rows correspond to indicated noise levels, the columns to indicated embedding di
ul
d
if

s.
i-
e

ries leads to erroneous false nearest neighbors as a res
noise corruption rather than of an incorrect embedding
mension. One possible solution to this problem is to mod
the threshold test~1.2! to account for additional noise effect
For example, instead of test~1.2! the threshold could be
determined by@5#
t of
i-
y

ux~k1d!2x„n~k!1d…u
iy~k!2y„n~k!…i

.Rtol1
2eRtolAd12e

iy~k!2y„n~k!…i
.

~1.5!

Here the new parametere must be chosen properly. Obv
ously the optimal value fore should be determined by th
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FIG. 2. Same as in Fig. 1 but for the Lorenz system~the dimension of the attractor is 2.06!. The box size is 0.02430.024 and the total
number of data points is 10 000. The regression lines are also plotted on each graph.
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noise level, but unfortunately, we have usually very limit
information on the amplitude of the noise in a given tim
series.

II. GRAPHICAL REPRESENTATION OF NEAREST
NEIGHBOR DISTRIBUTIONS

Without a clear understanding of thedistribution of
neighboring points in the time-delay coordinates we can
really estimate the applicability or limitations of the FN
t

method. Indeed, the original test~1.2! or the modified test
~1.5! cannot guarantee that we have reached a sufficient
bedding dimension, even if the percentage of false nea
neighbors is low.

We have therefore constructed a simple graphical pres
tation that simultaneously displays all essential features.
basic idea is that we show the target distanceRD5ux(k
1d)2x„n(k)1d…u as a function of the original distanc
Rd5iy(k)2y„n(k)…i for all d-dimensional vectors in the
data set.~The variableRd should be scaled with the norma
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PRE 60 419IMPROVING THE FALSE NEAREST NEIGHBORS . . .
ization coefficientAd in order to remove unessential chang
in the graphs due to changes in the embedding dimens
see the Appendix!.

As the first example we have chosen the Henon syste

Xn115121.4Xn
21Yn , Yn1150.3Xn . ~2.1!

The parameters of this system were selected from the cha
region ~the dimension of the attractor is 1.26), and the to
number of data points is 1000. In Fig. 1 we have plot

(R̃d ,RD) pairs (R̃d5Rd /Ad) for all vectorsy. The displayed
box size is 0.07230.072 units. Two distributions have als

been presented in each graph: theR̃d distribution on the bot-
tom part of the graphs, and the radial distribution plotted
the quarter arc. The embedding dimensiond is scanned from
1 to 4, and each set of four graphs is presented in f
different cases where the amplitude of the additional u
formly distributed ~measurement! noise is 0%, 0.1%, 1%
and 10% of the total amplitude.

According to Eq.~1.2! a neighbor is false if it lies above
the straight line going through the origin with slopeRtol . If
we use the test~1.5! the line has the same slope but there
an intercept equal to the noise correction term~scaled with
Ad). Normally we must know the slopea priori but using
these graphs it is not necessary. If there is no noise
clearly see that with the embedding dimension.1 all points
lie in the sector determined by thex axis and a line with
slope angle well below 90°. This important feature can
understood if we assume that the dynamics is given by

x~k1dT!5 f „x~k!,x~k11!, . . . ,x~k1d21!…. ~2.2!

Then we can write

ux~k1d!2x~ l 1d!u<i¹ f ~j!iiy~k!2y~ l !i ~2.3!

for somej, which implies that

RD

Rd
<i¹ f ~j!i . ~2.4!

Therefore all points in the (R̃d ,RD) plots must lie under a
line that depends on the specific system. The limit~2.4! is
true only when the embedding dimension is sufficient, a
for noise it is never possible. If the time series includes o
a small amount of additional noise we see its effect a
blurred boundary.

If the embedding dimension is too low the points cum
late close to they axis. The radial distribution plot confirm
this result. Ifd51 the distribution has significant values on
with angles close to 90° but ifd.1 the distribution is almos

zero within a distinct range at high angles. TheR̃d distribu-
tion is high only in the vicinity of zero. A small amount o
noise~0.1%, the second row from the bottom in Fig. 1! does
not change the picture much.

If the level of additional noise is increased to 1% t
points do not show as well formed a pattern. Also the rad
distribution is quite broad but it nevertheless has a clear z
range at high angles if the embedding dimension is 3, wh
can be regarded as an indication of underlying chaotic~or at
n;
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least deterministic! dynamics. The maximum of theR̃d dis-
tribution has clearly shifted towards large values which
typical for pure noise.

In the case of more noisy data~10% on the top row of Fig.
1! the distribution of points is totally different. Increasing th
embedding dimension does not really change the ove
shape of the point distribution. The radial distribution

fairly even, and theR̃d distribution is well centered and it
maximum shifts toward higher values when the embedd
dimension is increased.@In this case the modified test~1.5!
does not really take noise effects into account.#

In Fig. 2 we have presented corresponding graphs for
Lorenz system

Ẋ516~Y2X!,

Ẏ5X~45.922Z!2Y, ~2.5!

Ż5XY24Z,

using 10 000 data points and the sampling delay of 0.05.
these parameter values the dimension of the attractor is 2
Here we observe similar kind of behavior for various dist
butions, as in the case of the Henon system. Since the
dimension of the attractor is greater than 2, a clea
bounded sector pattern of points can only be seen in
graphs with embedding dimension>3. Ford52 most of the
points lie under a line with slope under 90°, which is al
reflected in the noticeable maximum of the radial distrib
tion, and since there is only a small portion of points b
tween this maximum and they axis we can estimate that th
true dimension of the attractor is not much greater than

The effect of even a small amount of noise can be clea
seen in Fig. 2. Already with 1% of noise the sector patte
has changed to a vertical one. This is shown clearly in
regression lines@corresponding to the first principal compo

nent of the points (R̃d ,RD)] plotted in Fig. 2. In the two
bottom rows the regression lines have a slope well be
90°, and this can be taken as evidence of deterministic
namics. For the two top rows the regression line is alm
vertical ~see also Fig. 3!, indicating noise contamination

Furthermore, we see that theR̃d distribution shows approxi-

FIG. 3. Slope of the regression line as a function of the emb
ding dimension for different percentage of noise taken from
graphs in Fig. 2.
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FIG. 4. Same graphs as in the bottom row of Fig. 2 but the total number of data points is only 1000.
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mately Gaussian shape, which spreads out and moves fu
and further away from the origin as the noise level or e
bedding dimension increases. The radial distribution, on
other hand, moves closer to the 90° line as noise contam
tion increases, which means that the height-width ratio of
point distribution increases, and therefore that it is more
more difficult to predict the next point.

In the standard procedure noise effects are taken into
count by the condition~1.3!, which means that points outsid
a circle of radiusAtolRA are counted false~actually it is an

ellipse, due to the scaling ofR̃d .) For Figs. 2 and 4 this
radius is 500 times the box size~and for Figs. 1 and 5 the
factor is about 20!. Although the boundary is quite far awa
one can imagine that higher levels of noise and higher
bedding dimensions both increase the number of false ne
bors, as has been reported@3,4#.

If the total number of data points of the preceeding syst
is decreased to 1000 the graphs are not so simple to inte
~Fig. 4!. There is no significant difference between grap
with embedding dimension 2 and 3. As usual, reliable e
mation of the underlying dynamical dimension requires
sufficient number of data points. However, by using t
graphical representation we can nevertheless make a r
estimate on dimension, even when only relatively few d
points are available.

As a final example we have analyzed the Mackey-Gl
system
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Ẋ5
0.2X~ t131.8!

11@X~ t131.8!#10
20.1X~ t !, ~2.6!

using the sampling delay of 2. As the dimension of the
tractor with these parameter values is about 3.6, the em
ding dimension must be at least 4. This can be seen in Fig
only in the rightmost graph is there a clear sector type
pattern, and the radial distribution is zero over a nonz
range of angles near 90°.

III. CONCLUSIONS

In this paper we have presented a graphical method
which one can better understand the predictions and lim
tions of the false-nearest-neighbor analysis. This tool c

sists of a (R̃d ,RD) plot augmented with two distributions

The slope of the regression line of points in the (R̃d ,RD)
graphs is a further tool in recognizing noise in determinis
systems.

The advantage of the present method is that we can no
even small amounts of noise contamination. At the sa
time we now see that determining the correct embedd
dimension can become difficult, even with a small amount
noise. Although the criteria~1.2! and~1.5! always produce a
yes or no answer, our recommendation is to first che
whether noise contamination is too high for determining
embedding dimension.
r
FIG. 5. Target distanceRD as a function of the nearest neighbor distanceR̃d for the Mackey-Glass system~the dimension of the attracto
is ;3.6). The box size is 0.04830.048, the total number of data points 10 000.
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Thus, when faced with experimental data, one should
determine whether the FNN method really is applicable.
would say that the noise level in the time series is too hig
the following properties are evident:

1. The radial distribution is spread out over the who
range from 0 to 90°,

2. theRd distribution has a clear maximum far away fro
zero;

3. the slope of the regression line is close to 90°.
For example, the data studied in the two top rows of F

2 has too much noise for any embedding dimension anal
by FNN method.

On the contrary, the time series is produced by a de
ministic system without excessive noise contamination
both of the following conditions hold:

1. the slope of the regression line is well below 90;
2. theRd distribution is centered close to zero.
In such a case one can next try to find the embedd

dimension, the criteria for that is: The embedding dimens
is sufficient for unfolding the dynamics if the points in th

(R̃d ,RD) plot form a clear sector pattern with a zero rad
distribution over a distinct range below 90°,

The appearance of an empty wedge atd53 in the two
bottom rows of Figs. 2 and 4 is clear, although noise effe
can already be seen at the 0.1% level of Fig. 2.
aw
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APPENDIX

Let f be a function that has been sampled very dens
Then we can assume that the nearest neighbor of
d-dimensional vector is the vector that starts at the next~or
previous! sample point

@ f ~ t01d!, f ~ t012d!, f ~ t013d!, . . . ,f ~ t01dd!#.
~A1!

The distance between these two points is therefore

Rd5A(
i 51

d

$ f ~ t01 id!2 f „t01~ i 21!d…%2

'A(
i 51

d

d2f 8~ t01 id!2'dAdu f 8~ t0!u, ~A2!

where we have assumed that the functionf changes relatively
slowly ~or that it is linear!. The distance between the targe
is

RD5u f ~ t01d11!2 f ~ t01d!u'du f 8~ t0!u, ~A3!

and by combining the results~A2! and~A3! we conclude that
the ratio ofRD /Rd is 1/Ad, and therefore it is reasonable i
all cases to normalize this ratio withAd.
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